
Current and future energy calculation standards for heat pumps

ANNEX 88

EBC 🌆

Laurent Socal Subtask C Leader, Annex 88 Consultant, Italy Friday 8th November 2024

Technology Collaboration Programme

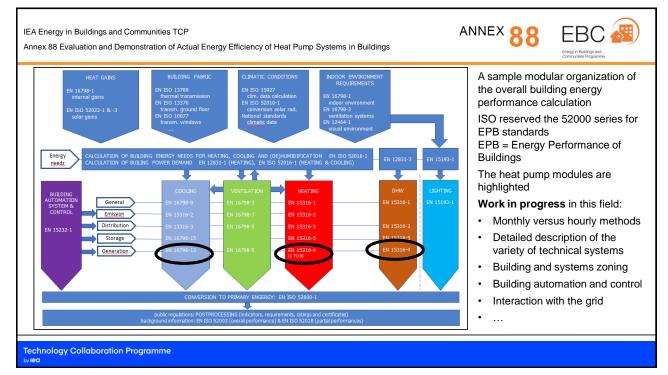
The context: building energy performance calculation methods

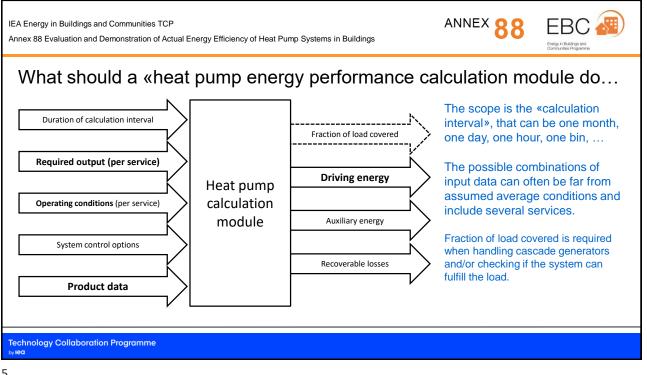
ANNEX 88

EBC 🌆

A set of calculation procedures that take into account:

- The actual or specifically designed building envelope geometry and properties
- The actual or specifically designed HVAC, domestic hot water and lighting systems (comfort technical systems) properties
- A standardized set of climate and use conditions of the building (or actual data for audits)


... and **calculates** the overall energy performance of the building («weighted energy use», such as non-renewable primary energy, renewable primary energy, CO_2 emission, etc.) and other so called "partial performance indicators" (e.g. average transmittance, system efficiencies).


This is done by «modules», that is specific parts on each considered aspect

 \rightarrow the focus of this presentation is on the specific part that deals with the heat pump performance. The heat pump shall be calculated according to the specific operating conditions in the actual assessed building.

This includes also any «wrong» situation (e.g. oversized machines, bad building insulation).

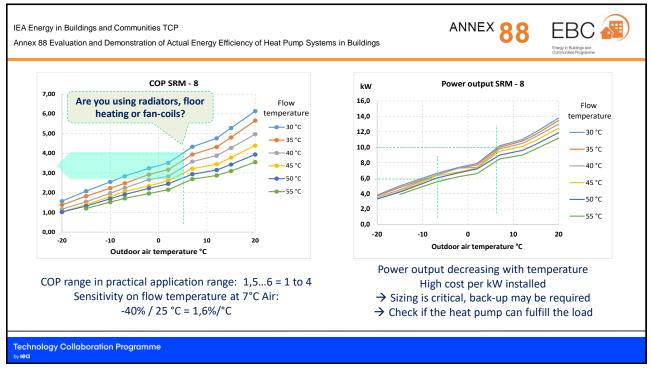
Technology Collaboration Programme

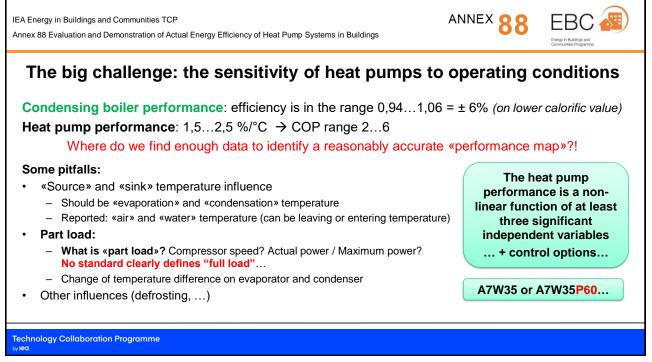
5

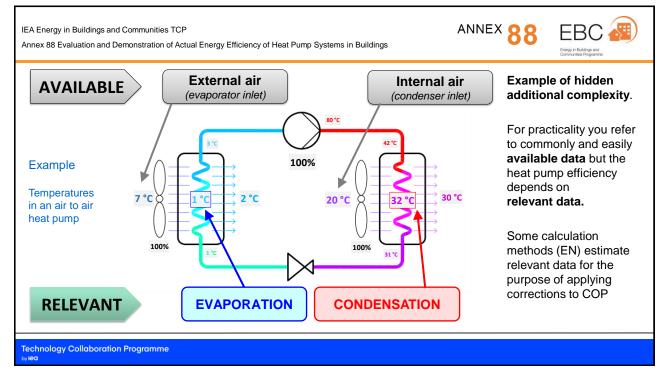
ANNEX 88 IEA Energy in Buildings and Communities TCP EBC Annex 88 Evaluation and Demonstration of Actual Energy Efficiency of Heat Pump Systems in Buildings

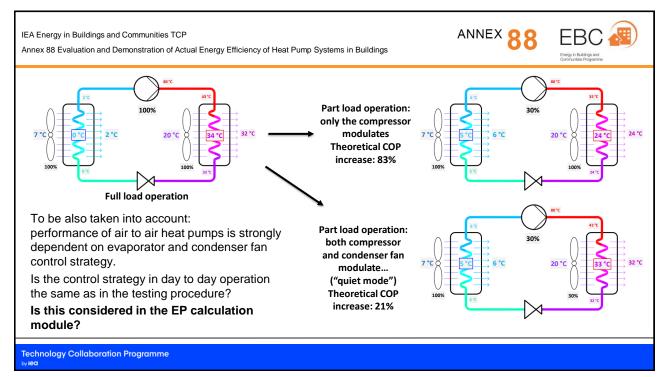
The big challenge: the sensitivity of heat pumps to operating conditions

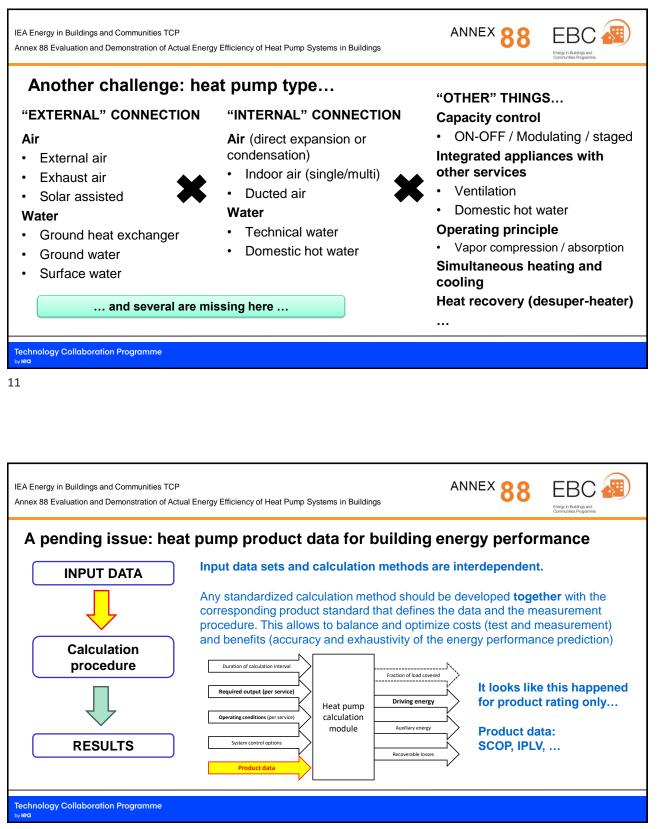
Temperature of both sources

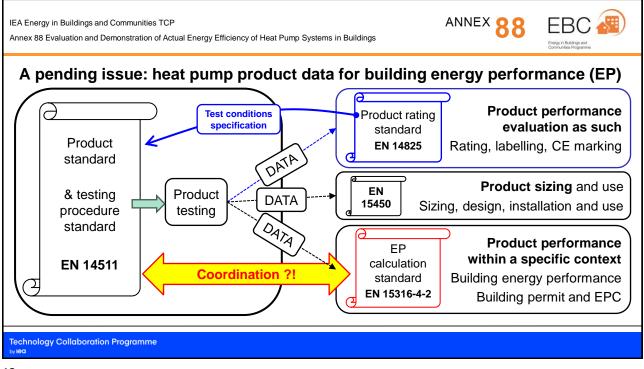

- Calculation of cold source temperature
 - External air temperature: hourly or bins for the monthly method
 - Surface/ground water temperature (heat exchanger approach?)
 - Ground heat exchanger outlet temperature (approach to ground? Ground temp drift?)
- Calculation of hot source temperature
 - Water based: calculation of required generator flow temperature (LWT)
 - Air based: indoor temperature or required duct air temperature (EAT)


Part load operation


- Continuous operation at reduced power (inverter) \rightarrow maximum turndown?
- ON-OFF operation on full load (ON-OFF control) or min load (inverter) \rightarrow cycling frequency
- Control options \rightarrow evaporator/condenser fan speed


Other influences


- Auxiliaries not included in the COP testing
 - Internal to the heat pump (absorption)
 - External (source pumps, etc.)
- Defrosting




```
13
```

x 88 Evaluation and Demonstration of Actual Energy Efficiency of Heat Pump Sys	stems in Buildings Every hadrog and Communities Programme
Building rating	Product rating
 Gives access to building market: building permit, building on the market 	 Gives access to product market: product on the shelf
 Looks for the performance of each product in building specific and changing operating conditions 	 Looks for the performance of all products in the same operating conditions (representative ?)
Needs parameters to assess the influence of each operating condition variable on the product performance	Needs a single performance indicator to rate the product on a scale
 Needs to distinguish between the effect of product characteristics and installation choices 	 Representative installation conditions may be embedded in the testing
 Has to foresee also the effect of bad products and wrong sizing, installation and operating conditions 	 No reference to possible wrong sizing, installation or operating conditions
EU EPBD Directive	EU Ecodesign + Ecolabeling Directives

Heat pump modules for building energy performance calculation The current challenge :

• Calculating the performance of the heat pump in a single calculation interval, which is a non-linear function of at least 3 variables: source and sink temperature, load

ANNEX 88

EBC 🌆

EBC

- Additional factors: control strategy, impact of installation on cycling frequency, defrosting, transient operation during domestic hot water charge,
- Using the currently available data

 → several methods, approximations and default data to leverage the available data sets

Not satisfactory because of low accuracy and flattening of the evaluation of products within a building (you use the same defaults for all)

Technology Collaboration Programme

15

IEA Energy in Buildings and Communities TCP Annex 88 Evaluation and Demonstration of Actual Energy Efficiency of Heat Pump Systems in Buildings
Heat pump modules for building energy performance calculation

Heat pump modules for building energy performance calculation Common approaches

- Starting from declared performance value in a single or several reference operating conditions, apply independent corrections for each influencing factor
 → basic assumption: the effect of each influencing factor is independent of the effect of the others
- Preprocess test results form several operating conditions to identify a characteristic function that describes the efficiency of the heat pump. Then apply the characteristic function in actual operating conditions.
 → example: assume exergy efficiency is a function of required output capacity only
- The seasonal efficiency is assumed to be a weighted average of efficiency for a set of part loads.

Frequently used "additional" assumptions (for small adjustments and/or complementing)

- Constant exergy efficiency (heat pumps performance is a given fraction of Carnot theoretical maximum)
 This is used for interpolation and extrapolation when data for several testing points are available
- Approach of evaporator and condenser is a linear function of instantaneous capacity (to switch from available temperatures to relevant temperatures)

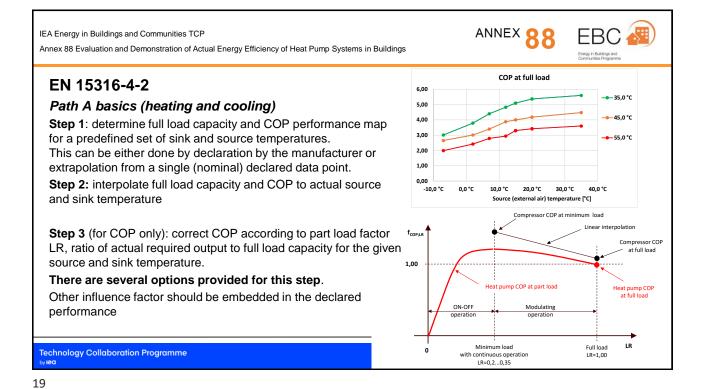
• ..

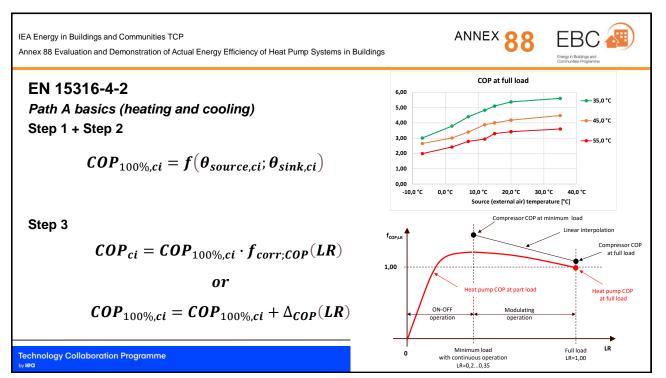
Sample methods: EN 15316-4-2 (new draft, on-going review)

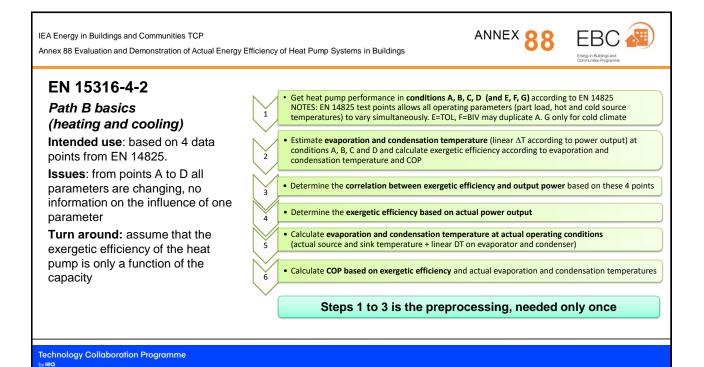
EN 15316-4-2 is structured as

- A main procedure, dealing with common issues like operating limits, priorities between services, required back-up, auxiliary energy, ...
- Specific parts according to two main calculation options ("path A" and "path B") options, designed to connect to two different sources of data.
 - Path A: intended to use data from EN 14511 \rightarrow capacity and COP at full load

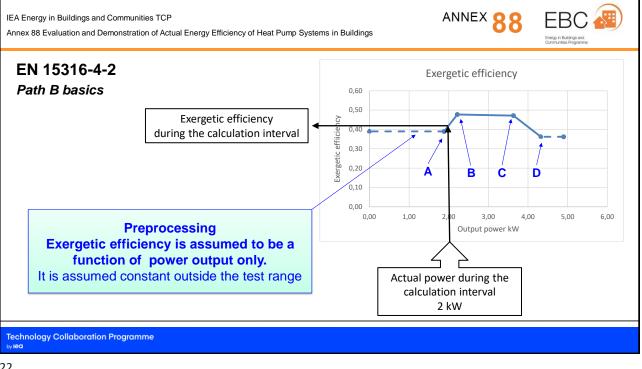
ANNEX 88


EBC 🌆


Energy in Buildings and Communities Programm


 Path B: intended to use data from EN 14825 → declared COP at various load and operating conditions

Technology Collaboration Programme


IEA Energy in Buildings and Communities TCP Annex 88 Evaluation and Demonstration of Actua	al Energy Efficiency of Heat Pump Systems in Buildings	ANNEX 88	EBC
 EN 15316-4-2 This is the backbone of the calculation procedure. The steps in orange Assessing the available capacity Calculating the COP in the calculation interval can be performed either with path A or path B depending on the heat pump type 	 Get product type (source / sink / technology) → decide calc Get product data Get required heat output for each service (heating and dome Calculate source temperature depending on source type Calculate sink temperature depending on service Get maximum available power output depending on operatin Handle priority and load dispatch within the calculation inter Calculate main energy input Calculate back-up energy input and energy to be covered by Calculate auxiliary energy and recoverable losses 	stic hot water) ng conditions (per service) rval ditions See next slides on Pa A and Path B details	
Technology Collaboration Programme			

IEA Energy in Buildings and Communities TCP

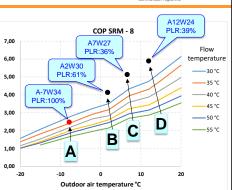
Annex 88 Evaluation and Demonstration of Actual Energy Efficiency of Heat Pump Systems in Buildings

EN 15316-4-2

Path B basics

The source of the data is EN 14825.

Test points are selected assuming a perfect sizing o the heat pump and a strong flow temperature reset according to outdoor temperature or load.


Coverage of the performance range is limited.

Ongoing development: using data for several temperature levels and interpolating.

		Ave	rage clir	nate
Test point	T _{aria}	PLR	LWT «35»	LWT «55»
	°C		°C	°C
Α	-7	0,88	34	52
в	2	0,54	30	42
С	7	0,35	27	36
D	12	0,15	24	30

Definition of testing points according to EN 14825 for average climate and 2 temperature levels.

Part load test are static tests. Test load is $P_{design} \times PLR$

EBC 🌆

Energy in Buildings and

ANNEX 88

Comparison between testing points according to EN 14825 for average climate and 35 °C and a full performance map of a heat pump

Technology Collaboration Programme

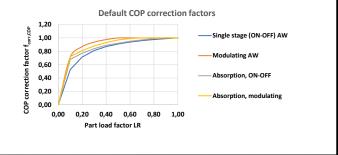
23

IEA Energy in Buildings and Communities TCP

Annex 88 Evaluation and Demonstration of Actual Energy Efficiency of Heat Pump Systems in Buildings

UNI-TS 11300

Italy


Same method as path A of EN 15316-4-2.

Correction according to part load is based on a simple default curve.

Required data point are listed in a table that includes summer air temperature because of domestic hot water production.

Not satisfactory with air to air het pumps and domestic hot water heaters.

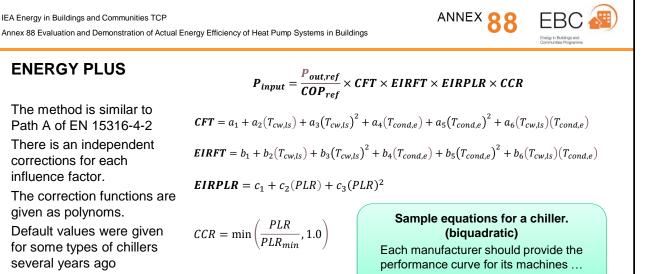
-	Re	Reference source		Referen	ce sink	tempe	erature	s, $\theta_{snk;ref,}$		
Type of source	temperatures θ _{src;ref}		rc;ref,j	Air		Water			stic hot iter	
External air	-7	2	7	12						
Surface water and ground water		5	10	15	20	35	45	55	45	55
Ground heat exchanger	-5	0	5	10						
Domestic hot water heaters, air source only	7	15	20	35	Not a	pplicat	ole		45	55

France								
Same method as	COP _{LR100}		: _	θ _{src}	: _			
bath A of EN 15316-4-2.	25	-15	-7	2	7	20		f _{COP;snk}
The full load performance	25 35	1,94 1.76 ◀	2,42 2.20◀	▲ 3,87 3,52 ◄	4,84	6,05 🔺	1,10	W35 to W25
nap is generated	θ _{snk} 45	1,70	▼ 1,76	2,82	4,40	4,40	0.80	W35 to W45
rom one single value	55	1,13	1,70	2,02	▼ 2.82	3.52	0.80	W45 to W55
according to default	65	▼ 0,90	1 , 1	▼ 1,80	v 2,02	2,82 V	0,80	W55 to W65
nultipliers to fill in the grid.		0,00	1,10	1,00	, 2,20	2,02		1100 10 1100
	f _{COP:src}	0,80	0,625	0,80		1,25		
COP is interpolated	-COF,SIC	A-7 to A-15	A2 to A-7	A7 to A2		A7 to A20	\sim	Default
according to actual source and sink temperature then he correction according to part load is applied	A set of default multipliers is defined for each type of heat pump (AA / AW /)							multiplier

25

IEA Energy in Buildings and Communities TCP
Annex 88 Evaluation and Demonstration of Actual Energy Efficiency of Heat Pump Systems in Buildings

SAP 10.2 United Kingdom


For each product, manufacturer shall perform an hourly calculation to determine a seasonal SCOP that will be uploaded to an official data-base for use by assessors.

The seasonal SCOP is calculated for a number of heat emitters and for a range of relative sizing of the heat pump compared to the building needs (PSR = Plant sizing ratio)

				r	r	r	T
PSR (Plant Size Ratio)	0,2	0,5	0,8	1,0	1,2	1,5	2,0
Floor heating							
Heating SPF	3,855	3,926	4,173	4,217	4,241	4,191	4,108
Running hours	4925	2716	1770	1447	1231	1016	800
Radiators							
Heating SPF	3.502	3.413	3.607	3.665	3.698	3.657	3.585
Running hours	4699	2516	1643	1345	1146	947	749
Convectors							
Heating SPF	3.930	3.89	4.133	4.186	4.215	4.166	4.081
Running hours	4776	2577	1682	1376	1172	968	764

ANNEX 88 EBC 🚈

Energy in Buildings and Communities Programme

... or you have to perform curve fitting ...

Technology Collaboration Programme

27

IEA Energy in Buildings and Communities TCP Annex 88 Evaluation and Demonstration of Actual I	Energy Efficiency of Heat Pump Systems in Buildings	ANNEX 88 EBC
NECB (Canada) The method is similar to Energy plus An example of default performance curve for air source heat pump is shown here	$Q_{available} = Q_{rated} \times CAP_FT_{EAS}$ $CAP_FT_{EAS} = a + (b \times t_{odb}) + (c \times t_{odb}^2) + a = 0.2536714 \qquad c = -0.0001861 \\ b = 0.0104351 \qquad d = 0.0000015$ $P_{operating} = P_{rated} \times EIR_FPLR \times EIR_FT \times EIR_FT$	t _{odb} = outdoor dry buib temperature in °F
NOTE: there is no correction based on the leaving water temperature level. A correlation with outdoor dry bulb temperature is assumed.	$EIR_FPLR = a + (b \times PLR) + (c \times PLR^2) + a = 0.0856522 cmod c = -0.1834361 dmod b = 0.9388137 dmod d = 0.1589702$ $EIR_FT = a + (b \times t_{odb}) + (c \times t_{odb}^2) + (d + a = 2.4600298 cmod c = 0.0008800 dmod b = -0.0622539 dmod d = -0.0000046$	(t_{odb}^{3}) (t_{odb}^{3}) $(t_{odb}^{1} = outdoor dry bulb)$ $(t_{odb}^{1} = outdoor dry bulb)$

IEA Energy in Buildings and Communities TCP

Annex 88 Evaluation and Demonstration of Actual Energy Efficiency of Heat Pump Systems in Buildings

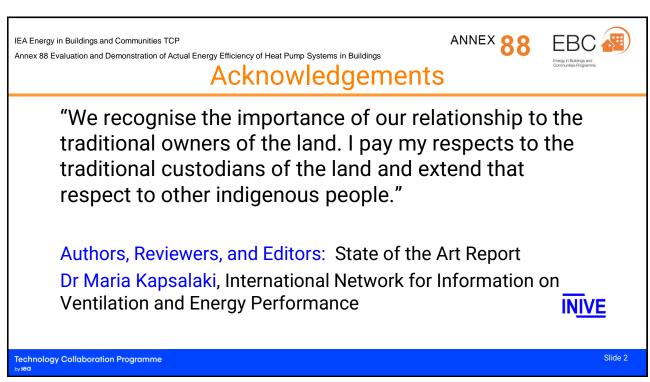
Conclusion

- Heat pumps are damn sensitive to operating conditions: 3 and non linear with a result in the range 1 to 3
- There is a **huge variety of heat pumps typologies** depending on source type, sink type, control options, combination with other products and services, etc.

ANNEX 88

EBC 🚮

- The product standardization has focused mainly on the product rating
- Countries have different prevailing needs (heating versus cooling) and different type of prevailing systems (air based versus water based)
- Building energy performance calculation requires the coverage of very various situations, often far away from the assumptions used e.g. in product rating.
- Given the variety of heat pump types and in the absence of well defined product data intended for energy performance calculation, all sorts of calculation methods have developed, none comprehensive and fully satisfactory
- Input data and methods are interdependent: much more collaboration is needed between heat pump experts and building energy performance experts to find a good compromise between the required effort (testing several operating conditions to map the performance of the heat pump) and the benefit (exhaustive and accurate prediction of the heat pump performance in all foreseeable operating conditions)
- New typologies are emerging, VRV/VRF, desuperheating, simultaneous heating and cooling, integration with ventilation...
- Huge work in progress...



ANNEX 28

EBC

Subtask D Leader, Annex 88 Professor of Energy Engineering Renewable Energy and Energy Efficiency Group The University of Melbourne

Technology Collaboration Programme

IEA Energy in Buildings and Communities TCP

ANNEX 88

EBC

Slide 3

Annex 88 Evaluation and Demonstration of Actual Energy Efficiency of Heat Pump Systems in Buildings Existing guidelines

	EN 15450:2007 - Heating systems in buildings - Design of heat pump heating systems
European	VDI 4645:2023-07 – Heating systems with heat pumps in single and multi-family houses – Planning, construction, operation
	The standards applied in Denmark: EN14511, EN14825, EN16147, and EN12102.
	CSA C273.5:11 (R2020) "Installation of air source heat pumps and air conditioners"
Canadian	CAN/CSA-C448 SERIES-13 "Design and installation of earth energy systems"
	CSA SPE-17:23 – HVAC guide for Part 9 homes
US	Air Conditioning Contractors of America (ACCA) manuals Manual J – load calculations, Manual S – Equipment selection
	The Northeast Energy Efficiency Partnership (NEEP) sizing and installation guidance
ISO 13153:2012 & Japanese	Design Guidelines for Low Energy Housing with Validated Effectiveness' (LEHVE)

	nunities TCP tration of Actual Energy Efficiency of Heat Pump Systems in Building NATACTERISTICS OF CURP	chergy in buildings and
Guideline	Year	НР Туре
EN 15450:2007	2007	Air-to-air, air-to-water, water-to-water, water-to- air, geothermal water-to-air, geothermal water- to-water, geothermal refrigerant-to-water, geothermal refrigerant-to-refrigerant
VDI 4645:2023-04	2023	Air-to-water
CSA SPE-17:23	2023	Air-to-air, air-to-water, geothermal water-to-air, geothermal water-to-water, gas-fired HP
ACCA Manual J	2016	Air to air and ground-source air-to-water
ACCA Manual S	2014 (new version 2023)	Almost all types of residential HVAC equipment
NEEP	2017 and 2018	Air source heat pumps - guidance
ISO 13153:2012	2012	Air-to-air, air-to-water
LEHVE	Mild climate: 2005, 2015 (2 nd edition) Hot humid climate: 2010, 2012 (English edition) Cold climate: 2012	Air-to-air, air-to-water
Technology Collaboration Prog	ramme	Slide 4

ANNEX 88 EBC 🜆 IEA Energy in Buildings and Communities TCP Annex 88 Evaluation and Demonstration of Actual Energy Efficiency of Heat Pump Systems in Buildings guidelines and target application Current Applications Guideline EN 15450:2007 Space heating, DHW VDI 4645:2023-04 Space heating and DHW **CSA SPE-17:23** HVAC Heating and cooling building load calculation ACCA Manual J To select appropriate heating and cooling equipment ACCA Manual S at design conditions. Residential homes are targeted. Air-to-air ductless NEEP and ducted Space heating and cooling, DHW ISO 13153:2012 Space heating and cooling, DHW LEHVE Technology Collaboration Programme Slide 5

IEA Energy in Buildings and Communities TCP Annex 88 Evaluation and Demonstration of Actual Energy Efficiency of Heat Pump Systems in Buildings Challenges	
Significant gaps in the ages (10-15 years) of current guidelines,	
Ongoing evolution of sizing guidelines within the industry,	
 Necessity for regular updates of design guidelines to align with technological advancements and methodological refinements, 	
 Efficient operation under varying load conditions is crucial HP models designed for higher efficiency under partial loads, integrating multiple staged HP systems for larger total loads, and utilising heat/cold thermal storage solutions. Effective control of HP systems is essential for maximising their performance 	
 Clear and logically prescribed technical documentation detailing control strategies is required. Identifying targeted HP system types early in guideline development is foundational 	
 Identifying targeted HP system types early in guideline development is foundational. Priorities Hydronic HP systems for space heating and domestic hot water, Air conditioners like variable refrigerant flow systems. 	
Technology Collaboration Programme #rea	Slide 6

	ildings and Communities TCP tion and Demonstration of Actual Energy Efficiency of Heat Pump Systems in Buildings Future focal points	ANNEX 88	EBC				
1.	The sizing procedure of heat pumps,						
2.	Countermeasures to avoid operation under low conditions and to improve energy efficiency u load condition by selecting products (referring test methods and provided performance indic	nder the low p to the load-b					
3.	Emphasising the critical role of controlling the systems together with a transparent specification of the control logics,						
4.	 Quantitative information on the energy use by different specifications and product selections in coordination with energy use calculation methods. 						
Technology Col	laboration Programme		Slide 7				
7							
	Ildings and Communities TCP tion and Demonstration of Actual Energy Efficiency of Heat Pump Systems in Buildings	ANNEX 88	EBC				
	Many thanks!						
	<i>Many thanks!</i> The end.						

Slide 8