

Air Infiltration and Ventilation Centre Webinar

Recent Standards and Guidelines on CO₂ Application and Interpretation

Webinar motivation and objectives

CO₂ part of ventilation & IAQ discussions since 1600s

- Impacts on occupants
- Bioeffluent odor perception
- Ventilation rate estimation
- Ventilation control

Misapplication and misinterpretation of CO₂ for decades More recently: more interest, more measurement, more confusion

Standards and guidance have been developed to clarify Webinar focused on standards and guidance Sensor performance will be addressed in a future webinar

Agenda (CET)

16:00 | Welcome & Introduction, Andrew Persily (NIST, USA)

16:05 | Background on the application of indoor CO₂: ASHRAE Position Document and ASTM Standard D6245, Andrew Persily

16:25 | Demand controlled ventilation in ISO 17772-1 (EN 16798-1) and ASHRAE Standard 62.1, Bjarne Olesen (Technical University of Denmark)

16:45 | Indoor CO2 values in guidelines and standards, Mark Mendell (Lawrence Berkeley National Laboratory, USA)

17:05 | ISO 16000-26, Sampling strategy indoor CO_2 and a review of sensing technology, John Saffell (NosmoTech Ltd., UK)

17:30 | End of Webinar

Background on the Application of Indoor CO₂: ASHRAE Position Document (2025) and ASTM Standard D6245 (2024)

INDOOR CARBON DIOXIDE

Designation: D6245 – 24

Standard Guide on the Relationship of Indoor Carbon Dioxide Concentrations to Indoor Air Quality and Ventilation¹

Andrew Persily National Institute of Standards and Technology Gaithersburg, Maryland USA

ASHRAE's Position Document on Indoor Carbon Dioxide

First approved February 2022 Revised February 2025

Position Document Committee:

Andrew Persily (Chair), William P. Bahnfleth, Howard Kipen, Josephine Lau, Corinne Mandin, Chandra Sekhar, Pawel Wargocki, Lan Chi Nguyen Weekes

First meeting: 26 March 2020

Motivations

CO₂ part of ventilation and IAQ discussions for centuries Commonly misinterpreted by industry, researchers, public

Recent trends

- Research on impacts of CO₂ on human performance.
- Standards and regulations for indoor CO₂ in non-industrial workplaces.
- Concerns about accuracy of indoor CO₂ concentration measurements.
- More widespread application of less expensive sensors.
- Indoor CO₂ monitoring promoted as indicator for managing risks of airborne disease transmission.

3

Outline

Indoor Carbon Dioxide is a Public Interest Issue Why ASHRAE Takes Positions on Indoor Carbon Dioxide

POSITIONS (abbreviated)

Indoor CO₂ concentrations are not comprehensive indicators of IAQ, but can be useful.

Differences between indoor and outdoor CO_2 concentrations can be used to evaluate ventilation using established tracer gas methods, but assumptions and inputs.

Evidence for CO₂ impacts on health, well-being, learning, sleep, and performance is inconsistent and doesn't justify changes to ventilation and IAQ standards & guidelines.

Use of CO_2 to assess risks of airborne disease transmission must account for space ventilation and occupants, and recognize differences between CO_2 and aerosols.

Sensor accuracy, location and calibration are critical.

Air cleaning technologies that remove only CO2 will not necessarily improve IAQ

Research recommendations (also abbreviated)

Indoor CO₂ exposure as a modifier of human responses to other environmental factors such as thermal comfort.

IAQ metrics that cover range of indoor contaminants and sources.

Health, comfort, productivity, learning, and sleep impacts of indoor CO₂ at concentrations typical of non-industrial indoor environments.

Physiological impacts of exposure to CO₂ at typical indoor concentrations.

Significance of indoor CO₂ concentration as an indicator of the risks of airborne infectious disease transmission

CO₂ sensor performance and locations for different applications.

Occupant-generated CO₂ as a tracer gas to estimate ventilation rates.

Strategies for DCV using CO₂ and other indicators of occupancy.

Surveys of indoor CO₂, ventilation rates and occupancy in different building types.

Recommended activities

Development of guidance and standards on indoor CO_2 concentration measurement and sensor selection.

Development of educational programs, conference sessions and workshops, and guidance documents to help practitioners and researchers understand the application of indoor CO_2 .

Guidance on HVAC equipment and controls employing CO₂ monitoring.

Guidance on the use of CO_2 as a tracer gas for measuring building ventilation rates and outdoor air distribution.

Appendix

Detailed discussion to supports positions and recommendations in the document.

- The history of the role of indoor CO_2 concentrations in the context of building ventilation and IAQ
- Health and cognitive impacts of exposure to CO₂
- Existing standards and regulations for indoor CO₂ concentrations
- · CO₂ as an indicator of IAQ and ventilation
- Use of CO₂ as a tracer gas for estimating ventilation rates
- Increases in outdoor CO₂ concentrations
- Air cleaning directed at CO₂ removal alone
- CO₂ as an indicator of the risk of airborne disease transmission

Conclusion

ASHRAE position document clarifies relationship of indoor CO_2 to ventilation and IAQ for practitioners, researchers and policymakers.

Additional research and new guidance will advance application of indoor CO_2 to improve IAQ.

https://www.ashrae.org/file%20library/about/position%20doc uments/pd_indoorcarbondioxide_2025.pdf

Search on "ASHRAE indoor carbon dioxide"

ASTM Standard D6245-2024

Scope

Background on health, comfort, and performance impacts of CO_2 exposure, as well as indoor CO_2 limits in standards and regulations.

- Estimation of CO₂ generation rates from people as a function of sex, age, body mass, and level of physical activity (Section 6).
- Relationship of CO_2 to IAQ, including how CO_2 relates to the perception of human body odor, limitations on CO_2 as a metric of IAQ, and the relationship of CO_2 to the risk of infectious aerosol exposure (Section 7).
- How CO₂ concentrations can be used to evaluate building ventilation and the use of indoor CO₂ concentrations for demand control ventilation (DCV) but not a detailed application guide (Section 8).
- Concentration measurement issues, such as calibration and sensor location, and continuous indoor concentration monitoring but does not include specific test methods for either application (Sections 9 and 10).

ASTM Standard D6245-2024

Section 6: CO₂ Generation Rates

(Persily and de Jonge, Indoor Air, 2017)

Equation to estimate rate of CO₂ generation of an individual Based on concepts in the fields of human metabolism and exercise physiology

<u>Inputs</u> Individual sex, age and body mass; level of physical activity (met rate)

Standard contains input data from literature

Tables of CO2 generation rates by sex and age

<u>Alternative to equation in ASHRAE Fundamentals</u> No explanation of technical basis; old metabolic rate data; sex and age only considered indirectly

TABLE 2 Matchelle Dates (Min. Mail des Verlages Division) & alticities (MD)									
TABLE 2 Metabolic Rates (M in Met) for Various Physical Activities (15) Activity M (Mat)									
Calisthenic	s – licht eft	lort		,				2.8	9
Calisthenic	s - modera	to offort						3.8	
alisthenic	s – vigorou	is effort						8.0	
hild care									
waning, a	weeping -	moderate ence						3.8	
ancing -	aerobic. oc	neral						7.3	
ancing -	general							7.8	
lealth club	exercise o	lasses – gener	al					5.0	
utchen act	tivity - mod	erate effort						3.3	
ying or sit litting read	ting quiety ting, writing	, typing						1.3	
sitting at sp	porting eve	nt as spectator						1.5	
litting task	s, light effo	rt (for example	office wo	ek)				1.5	
iting quie	itly in roligie	ous service						1.3	
itanding or	uletty							0.95	
tanding ta	ssks, light e	fort (for examp	ile, store	clerk, filing)				3.0	
Valking, lo	ss than 2 r	nph, level surfa	ce, very s	low				2.0	
Valking, 2.	8 mph to 3	.2 mph, level s	urface, m	oderate pace				3.5	
	and an Direct							D	and to come
ABLE 4 CI	arbon Dioxi	Se Generation Hi	oes as a P	unction of Oci	cupant Sex, Age	, and Me	Level (Based on	Body Mass D	ata in (18j)
ion: 1Th	ese CO ₂ gene	ration rates are be	sed on an a	ir temperature (of 273 K and an	air pressu	re of 101 kPa.		
lae (v)	Nean Mass	RMR (Mulday)			Level of	Physical J	Male (L/II)		
4- 07	0.00		1.0	1.2	1.4	1.6	2.0	3.0	4.0
6									
<1 to <3	8.0	1.86	0.9	1.1	1.3	2.4	1.8	27	3.6
50 +6	18.8	3.90	1.9	2.3	2.6	3.0	3.8	5.7	7.5
to <16	57.6	7.02	3.4	4,1	4.8	4.0 5.4	6.8	10	13.6
10 <21	77.3	7.77	3.7	4.5	5.3	6.0	7.5	11	15
to <40	87.0	7.83	3.7	4.6	6.3	6.1	7.6	11	15
to <50 to <60	90.5	8.00	3.8 4.6 3.8 4.6		4.6 5.4 4.6 5.4	6.2 6.2	7.7	12	18 15
0 to <70	89.5	6.84	3.3	4.0	4.6	5.3	6.6	9.9	13
260	76.1	6.19	3.0	3.8	4.2	4.8	6.0	9.0	12
ales									
et .	7.7	1.75	0.8	1.0	1.2	1.4	17	2.5	3.4
10 <3 10 <6	12.3	2.68	1.4	1.7	2.0	2.2	2.8	4.2 5.2	5.6 7.0
10 <11	31.7	4.73	2.3	2.7	3.2	3.7	4.0	6.9	9.2
6 to <21	21 46.6	£ 10	0.0	34	20	17	5.0 5.0		-2
to <30 to <40	Bann	of body mass	<u>ь</u> Т						2
to <50	T	10th percentile	~1						2
10 <70	114	75th percentile							1
to <80 ≥80	20 H	Median							1
	- IIU -	25th percentile							
ŝ	II É.	the succession							
ju j	1Ľ	ran percercite			1				
- ion	15			1	11				
evel				T I	11.				
					1.1		1 1	1	
1			1 1	H th	1 11		U (
÷.	10			14	l II i	1 d	1 J		4.met
te l			1 1	- 11 - E		1 8	- EL - 11	- 1' - ¹	
ð			1 H	I I		1	_1 I	- <u>1</u> §	3 met
			1 .11	1 0	1 1 1	11	1 I	1 -	
	5	1 1 1	111	1 1		11	1 1	1 1	2 met
		1 J 1	1.5	14	11, 11,	1.51	1 I.	i h	1.4 mg
		1.0 ⁸	111	r *	1° 1°	I.	* 0* i	r P ²	1.0 met
	1.11	Pr. 1.							
	0 -	110 110	6.11	11.10 16.10	31.00 32.00	40.14	10.10 (0.10 ·	10.10	
	0	110 310 <3y <6y	6 to <11 y	11 to 16 to <16 y <21 y	21 to <30 y <40 y	40 to <50 y	50 to 60 to	70 ta <80 γ ≻+80 γ	

11

ASTM Standard D6245-2024 Section 7: CO₂ and Indoor Air Quality

Relation of CO₂ to perception of human body odor

Multiple studies showing CO_2 concentrations of about 700 ppm(v) above ambient corresponds to 80 % perceived odor acceptability by unadapted visitor

Limitations of CO₂ as a metric of IAQ

Many other important pollutants independent of occupants, e.g., outdoor air, building materials, cleaning products.

Relationship of CO₂ to risk of infectious aerosol exposure

Indicator of ventilation or risk?

ASTM Standard D6245-2024

Section 8: Ventilation

Percent outdoor air at air handler based on CO₂ concentrations in outdoor, return and supply airstreams

Tracer gas measurements of air change rates using occupant generated CO_2 as a tracer (ASTM E741 and ISO 12569)

Key assumptions, including single zone

Constant injection, CO2 concentration at steady-state

Indicator of ventilation adequacy relative to target ventilation rate, depends on space and occupants (Persily 2022)

Short discussion of using CO₂ for demand control ventilation (DCV), but does not contain detailed application guidance

13

<section-header>ASTM Standard D6245-2024 Section 9: CO₂ Concentration Measurement Sources of measurement error Calibration Warm-up Interferents Outdoor concentration measurement Indoor concentration measurement Cation 1: Concining sensor location Concentration, including sensor location Concentration Concentra

Conclusion

ASTM D6245 is a guide not a test method or practice, but hopefully it contains useful information for practitioners

And hopefully it can reduce misapplication and misinterpretation of indoor CO₂ concentrations

Still need formal methods of test for measurement and analysis

Reading List

ASHRAE. 2025. Position Document on Indoor Carbon Dioxide..

ASTM. 2024. D6245 Standard Guide on the Relationship of Indoor CO₂ Concentrations to Indoor Air Quality & Ventilation.

ASTM. 2011. E741 Standard Test Method for Determining Air Change in a Single Zone by Means of a Tracer Gas Dilution.

ISO. 2017. 12569: Thermal performance of buildings and materials — Determination of specific airflow rate in buildings — Tracer gas dilution method, International Standards Organization.

Kappelt, Russel, Kwiatkowski, Afshari. and Johnson. 2021. Correlation of Respiratory Aerosols and Metabolic Carbon Dioxide, *Sustainabilty*, Online 5 November 2021.

Lu, et al. 2022. The nexus of the indoor CO_2 concentration and ventilation demands underlying CO2-based demandcontrolled ventilation in commercial buildings: A critical review. <u>Building and Environment</u> **218**.

Peng and Jimenez. 2021. Exhaled CO₂ as a COVID-19 Infection Risk Proxy for Different Indoor Environments and Activities, *Environmental Science & Technology Letters*, **8**, 392-397.

Persily, 1997. Evaluating Building Ventilation with Indoor Carbon Dioxide. ASHRAE Transactions, 103(2).

Persily and de Jonge. 2017. Carbon Dioxide Generation Rates of Building Occupants, Indoor Air, 27, 868-879.

Persily, 2021. Don't Blame Standard 62.1 for 1000 ppm CO2, ASHRAE Journal, 63(2).

Persily, 2022. Development and Application of an Indoor Carbon Dioxide Metric. Indoor Air. DOI: 10.1111/INA.13059

Persily and Polidoro. 2022. Indoor Carbon Dioxide Metric Analysis Tool. NIST Technical Note 2213, National Institute of Standards and Technology.

QICO2 tool: https://pages.nist.gov/CONTAM-apps/webapps/CO2Tool/#/

DTU

Demand Control Ventilation based on CO2 ISO17772-1/2, EN16798-1/2 and ASHRAE 62.1

Professor Bjarne W. Olesen, Ph.D., Dr.h.c., R.1. ASHRAE Fellow, Presidential Member International Centre for Indoor Environment and Energy DTU.SUSTAIN Technical University of Denmark

Demand Control Ventilation based on CO₂

MELCO-DTU

- ASHRAE 62.1-2022 includes an addendum ab from 2023 on DCV
- ISO 1772-1/2 and EN 16798-1/2 is being revised and a new part on operation and DCV will be included
- General use of CO₂ as an indicator of the ventilation needs of people
- Often a fixed set-point of 1000 ppm is used.
- Issues

24. August 2023

1

DTU Susta

- For the same IAQ level the CO₂ setpoint depends on level of building emissions and people density.
- Outdoor concentration is not considered (350-550 ppm)
- CO₂ concentration in a room is not uniform. Position of the CO₂ sensor?

Concept for calculation of design ventilation rate ISO 17772-1 (EN 16798-1)

 Table 1: Design ventilation rates for non-adapted persons for diluting emissions (bio effluents) from people and for buildings for different categories

		People component,	Building Component, q _B		
		q _p			
Indoor	Expected	Airflow per non-	Very low	Low polluting	Non low
Environmental	Percentage	adapted person	polluting	building	polluting
Category	Dissatisfied	l/(s.pers)	building	$1/(s m^2)$	building
	%		$l/(s m^2)$		$1/(s m^2)$
IEQI	15	10	0,5	1,0	2,0
IEQII	20	7	0,35	0,7	1,4
IEQIII	30	4	0,2	0,4	0,8
IEQ _{IV}	40	2,5	0,15	0,3	0,6

People component for sedentary in ASHRAE 62.1 is 2,5 l/(s.pers)

Design ventilation rates (ISO17772-172 AND EN 16798-1/2)													
			\boldsymbol{q}_p	q_p	q_B	q	tot	q_B	q_i	tot	q_B	q	tot
uilding or ice	gory	area erson	mini venti ra	mum lation ite									
pe of bi spa	Cate	Floor m²/p	l/ (s m²)	l/s pers.	l/s, m²	l/s, m²	l/s,pers	l/s, m²	l/s, m²	l/s,pers	l/s, m²	l/s, m²	l/s,pers
Ty			for occ or	upancy 1ly	for ve	ery low-p building	dlluted g	for	low-pollı building	uted	for no	n-low-po building	olluted
Single office	Ι	10	1	10	0,5	1,5	15	1	2,0	20,0	2	3,0	30
	II	10	0,7	7	0,35	1,1	11	0,7	1,4	14,0	1,4	2,1	21
	III	10	0,4	4	0,2	0,6	6	0,4	0,8	8,0	0,8	1,2	12
	IV	10	0,25	2,5	0,15	0,4	4	0,3	0,6	5,5	0,6	0,9	9
Landscaped	Ι	15	0,7	10	0,5	1,2	18	1	1,7	25,0	2	2,7	40
office	II	15	0,5	7	0,35	0,8	12	0,7	1,2	17,5	1,4	1,9	28
	III	15	0,3	4	0,2	0,5	7	0,4	0,7	10,0	0,8	1,1	16
	IV	15	0,2	2,5	0,15	0,3	5	0,3	0,5	7,0	0,6	0,8	12
Conference	Ι	2	5	10	0,5	5,5	11	1	6,0	12,0	2	7,0	14
room	II	2	3,5	7	0,35	3,9	8	0,7	4,2	8,4	1,4	4,9	10
	III	2	2	4	0,2	2,2	4	0,4	2,4	4,8	0,8	2,8	6
	IV	2	1,25	2,5	0,15	(1,4) 1,8	(3) 4	0,3	(1,6) 2	(3,1) 4	0,6	1,9	4

Table B2.5 - Example of equivalent increase in CO ₂ levels indoor for the total ventilation rates
specified in Table B2.3

CO₂ emission 20 l/h per person, sedentary)

Type of building	Category	occupancy	ΔCO ₂ [ppm]					
of space		person/m²	Very low- polluting	low-polluting	Not low- polluting			
	1	0,1	370	278	185			
Single office	П	0,1	529	397	265			
Single Onice	Ш	0,1	926	694	463			
	IV	0,1	1389	1010	654			
	1	0,07	3 <mark>17</mark>	222	139			
Land seened office	П	0,07	454	317	198			
Land-scaped office	Ш	0,07	741	556	347			
	IV	0,07	1235	794	483			
	1	0,5	505	463	397			
Conference recent	П	0,5	722	661	567			
Conference room	Ш	0,5	1263	1157	992			
	IV	0,5	1462	1389	1502			
	1	1,33	535	517	483			
Auditorium	11	1,33	765	738	690			
Auditorium	Ш	1,33	1347	1300	1208			
	IV	1,33	1576	1398	1576			

Recommended set-points for DCV control

Doom	Person	per m²	CO ₂ above outdoor, ppm		
Room	ISO 17772	ASHRAE 62.1	ISO 17772	ASHRAE 62.1	
Landscape office	0,07	0,05	320	600	
Conference room	0,5	0,5	660	1500	
Auditorium	1,33	1,50	740	1800	

Method 2 Individual Pollutants (IAQ procedure)

The ventilation rate required to dilute a pollutant shall be calculated by this equation:

 $Q_{h} = \frac{G_{h}}{C_{h,i} - C_{h,o}} \frac{1}{\varepsilon_{v}}$

Eq (2)

where:

Q_h is the ventilation rate required for dilution, in litre per second;

G_h is the pollution load of a pollutant, in micrograms per second;

C_{h,i} is the guideline value of a pollutant, see Annex B6, in micrograms per m³;

 $C_{h,o}$ is the supply concentration of pollutants at the air intake, in micrograms per m³;

 ε_v is the ventilation effectiveness

NOTE. $C_{h,i}$ and $C_{h,o}$ may also be expressed as ppm (vol/vol). In this case the pollution load G_h has to be expressed as l/s.

			in city of Copenha	agen
Requi	red ventilatio	Hiroki Tak n rate – calculi	ahashi, Mariya Petrova Bivo Jürgen Nickel and Arsen Kri ations	larova, Athanasia Keli kor Melikov
$q = \frac{a_{mm}}{a_{h,i} - a_{h,\omega}} * 10^6$	q_{t} required vent $C_{dtC,C}$: CO_2 generation $C_{h,i}$:maximum allow $C_{h,ac}$: CO_2 volume for	ilation rate (m ³ /h) on rate in the room at ro owed volume fraction of raction in outdoor air (p	om conditions (m ³ /h) O_2 in indoor air (ppm) pm)	
Outdoor CO ₂ concentration [ppm]	Indoor CO ₂ concentration [ppm]	Indoor CO ₂ generation rate* [m ^{3/} h/person]	Required ventilation rate [m ³ /h/person]	
400	1000	0.019	31.7	
450	1000	0.019	34.5	
500	1000	0.019	38.0	
550	1000	0.019	42.2	
*Sandard CEN A change a change	by 50 ppm in the by approximately	outdoor CO ₂ concer 10% in the require	ntration causes d ventilation rate.	

Influence of using gas phase air cleaner with 30% efficiency

Space type	Occupancy [pers/m ²]	Category	Derived from Method 1 q _{tot}			
			Low-polluting building No air cleaning	Low-polluting building With air cleaning 30% efficiency		
			ΔCO ₂	[ppm]		
Single	0.1	I.	278	397		
office		П	397	567		
		Ш	694	992 (817)		
		IV	1010 (794)	1443 (911)		

Demand Control Ventilation based on CO₂

- General use of CO₂ as an indicator of the ventilation needs of people
- Often a set-point of 1000 ppm is used.
- Issues
 - For the same IAQ level the CO₂ setpoint depends on level of building emissions and people density.
 - Outdoor concentration is not considered (350-550 ppm)
 - CO₂ concentration in a room is not uniform. Position of the CO₂ sensor?
 - An air cleaner with a CADR (clean air delivery rate) will influence the set-point)
- ASHRAE 62.1-2022 Addendum 2ab include requirements/guideline for DCV
- ISO 17772-1/2 and EN 16798-1/2 a revision will include requirements/guideline.

Outdoor air ventilation is critical for IAQ
Ventilation dilutes indoor-generated air pollutants
Ventilation reduces indoor exposures

including viral bioaerosols

Minimum ventilation rate limits

historically, health-based
recently, odor-based

COVID → renewed recognition, ventilation important for health

We reviewed worldwide CO₂ guidelines for IAQ

- Measuring VRs often difficult
- Many VR guidelines specify indoor CO₂ limits as proxy for VR
- Basis for various CO₂ limits set not clear.
- We reviewed worldwide CO₂ guidelines and supportive evidence provided
- Goal assess scientific support for current CO₂ guidelines as protective from health effects, e.g., airborne infectious disease transmission

3

Approach: Review of worldwide CO₂ guidelines for IAQ

- ISIAQ STC34 database -international IAQ guidelines*
- + current literature review
- Excluded occupational limits 5,000+ ppm
- 43 CO₂ guidelines, nations/ organizations
- All maximum values
 - one-time $\leftarrow \rightarrow$ time-averaged
 - single value $\leftarrow \rightarrow$ multiple tiers
 - absolute indoor ←→
 differential (above outdoor)

Pollutants -	Value	Averaging Ti \neg	Countries
Carbon Dioxide (CO2)	700 ppm above outdoor	8 hour	Singapore
Carbon Dioxide (CO2)	5000 ppm		Norway
Carbon Dioxide (CO2)	1000 ppm		Norway
Carbon Dioxide (CO2)	1000 ppm	Ceiling limit	Malaysia
Carbon Dioxide (CO2)	15000 ppm	15 minutes	United Kingdom
Carbon Dioxide (CO2)	5000 ppm TWA	8 hour	United Kingdom
Carbon Dioxide (CO2)	1000 ppm		Denmark
Carbon Dioxide (CO2)	1200 ppm		Denmark
Carbon Dioxide (CO2)	1000 ppm	24 hour	Canada

Example Data from ISIAQ IEQ Guidelines Database*

* https://ieqguidelines.org/

urrent worldwide CO ₂ guidelines for IAQ/V	′R – ev	videnc	e basis?	
 Few provide evidence for limits set Most with evidence> odor 				
 1000 ppm: maybe popular because outdoor + 700 ppm controlled occupant odors 			Evidence pr	ovided
 Few provide evidence that protect from health effect 		None	Limited/ Insufficient	Substantial
 Most show no understanding of scientific basis for CO₂-based VR limit 		25	10	8
 Some set <u>averaged CO₂</u> limits (e.g., 8-hr), suggesting confusion about basis 	Note: A minimu CO2 lim Also, AS corresp arguabl	After comp um limits fo nits) to con SHRAE 62. Sonding to ly odor-ba	letion of this review or equiv. clean airflo trol airborne disea 1 addendum ab set 62.1 airflow standa sed.	w, ASHRAE 241 set ow rate (but not se transmission. \triangle CO2 limits ırds, which are

Worldwide CO_2 guidelines: human effects targeted for control, and supportive evidence provided for the limits set

Effects	Number of	Evidence provided				
to be controlled	guidelines	None	Limited/ Insufficient	Substantial		
None specified	16	16	0	0		
Odor dissatisfaction	19	6	6	(7)		
Health effects, non-infectious	5	2	3	0		
Health effects, infectious (airborne)	3	1	1			
ALL	43	25	10	8		

EXTRA SLIDES

Table S4. Infection-risk-based CO2 concentration limits from Nordic Ventilation Group (NVG) proposed guideline for post-COVID target ventilation rates*

Space Use	Floor Area (m ²)	Room Height (m)	Number of Occupants	Infection-risk-based Indoor CO ₂ Concentrations (ppm)	
Small classroom	31.6	3.5	13	1097	
Classroom	42.5	2.9	25	941	
Classroom	56.5	2.9	25	962	
reduced occupancy	56.5	2.9	20	999	
Teaching space, large	129.5	2.9	50	776	
reduced occupancy	129.5	2.9	40	801	* f
Office, 2-person	21.0	2.6	2	1535	* from Health-based
Office, open plan	56.7	2.6	6	736	target ventilation rates
Office, open plan	173.0	2.6	17	619	and design method for
Meeting room	29.2	2.6	10	563	reducing exposure to
reduced occupancy	29.2	2.6	6	584	airborne respiratory
Meeting room	52.5	3.2	24	521	infectious diseases,"
reduced occupancy	52.5	3.2	12	534	NVG. 2022. Available at:
Restaurant	259.5	2.9	154	486	http://www.scanvac.eu
reduced occupancy	259.5	2.9	50	494	
Gym	173.5	3.5	12	657	
Gym, school	217.5	6.0	25	604	14

Conclusions Anay CO₂ guidelines for IAQ specified no adverse effect for control. Most frequently specified = odor; few specified health; three specified control of infectious disease. Evidence-based CO₂ guidelines rare. Most provided no supportive evidence. Few provided persuasive evidence. Only one CO₂ guideline developed from scientific models to control airborne coVID-19 transmission. No scientific basis apparent for setting one CO₂ limit for IAQ across all buildings setting CO₂ limit for IAQ as extended time-weighted average using a random one-time CO₂ measurement to verify a desired VR.

ISO 16000-26 and sampling strategy for indoor CO₂ and a review of sensing technology

> John Saffell NosmoTech Ltd. Cambridge UK

AIVC Webinar March 17th, 2025

ISO 16000-1 and ISO16000-26

Indoor environment characteristics Investigating the ventilation system Sampling duration Sampling location Parallel measurements of the outdoor air and metaparameters Analysis and data quality

CO₂ detection technologies Diffusion tubes or NDIR? Current state of NDIR for CO₂ detection Steady state or tracer gas decay?

Indoor environment characteristics

An indoor environment is rarely static: human activity, ventilation rate, cleaning and cooking, air purifiers, emissions and sinks from surfaces create a dynamic environment.

Heated ventilation frequently causes stratification

People are very close to polluting sources, unlike outdoor air

Air composition varies between rooms and is less homogeneous than outdoor air: Oxidizing gases (chlorine, ozone, NO2) react with VOCs Particle composition is very different than outdoor air VOCs are a major concern: cleaning, cooking, pets, health products, DIY

3

Investigating the ventilation system

Do we need to measure in various locations in a space? Maybe not in large spaces (auditoria, open plan offices).

We cannot assume homogeneity in complex spaces or with mechanical ventilation in small spaces. There may be "dead zones" with reduced air exchange rates.

Ventilation effectiveness is achieved when the concentrations in the extract air and in the indoor air at the sampling point are identical.

The homogeneity of the air distribution in a room can be investigated using CO_2 concentration measurements, following extract air and the sampling point closely in time at differing points in the room.

Sampling duration

Measurement starts after the room has been vigorously ventilated- the initial CO₂ concentration is set by the ambient air.

In mechanically ventilated rooms, operate the VAC equipment for one hour before first taking the base reading in an unoccupied room and then in the presence of the users of the room, also for a room with free ventilation.

For tracer gas air change measurements, recording starts about 15 to 30 min after injection of the additional CO_2 into the room air. A simple table fan encourages circulation (ISO 16000-8) in small-medium volume spaces.

If the ventilation effectiveness is to be determined by the steady state concentration in a mechanically ventilated occupied room, the CO₂ concentration is measured at various points about 2 h after starting up the VAC plant.

If the emission characteristics of a source are to be recorded or if an unknown source of combustion exhaust gases is suspected in a room, the CO_2 concentration is continuously recorded over a longer period.

Sampling location

For rooms with a surface area of up to 50 m², locate a single sampling point at 1.5 m height and at least 1 to 2 m from the walls.

For larger rooms, more sampling sites are needed to determine any concentration gradients.

The measuring device must not be near the sampling point and people should be at least 1.5 to 2 m from the sampling point.

When searching for an unknown source of combustion exhaust gases, the intake probe of the measuring device is moved every 5 to 10 min, to find the site of the highest concentration.

When measuring in mechanically ventilated rooms, the point at which the supply air enters the room must be measured to determine the outdoor pollution concentrations.

Parallel measurements of the outdoor air and metaparameters

Outdoor air samples should be measured near the building, but not closer than 1 m.

In making such measurements, remember that vertical concentration gradients may occur.

If the building is equipped with an HVAC system, the outdoor air should be sampled near the air intake.

Wind direction, wind velocity and other weather conditions are useful information.

Always measure accurately temperature and humidity, and barometric pressure can be used to improve reading accuracy.

Analysis and data quality

Measurement uncertainties inevitably occur. They are caused by the limits of the measurement device and procedure, and by uncertainties in sampling and analysis.

You must establish how to describe the measurement uncertainty and which performance characteristics are to be used to describe the results in the measurement report. There is no generic method for calculating Uncertainty, it depends on the equipment and protocol.

When calculating Uncertainty, refer to the Guide to the Expression of Uncertainty in Measurement (GUM).

Summary ISO 16000-26 (and 16000-1)

The built environment is dynamic and different from outdoor air.

Characterize the ventilation effectiveness.

Determine the baseline concentration, wait 2 hours for steady state CO_2 measurement, and sample regularly for tracer decay testing.

Measure at 1.5 m height and 1 to 2 m from walls; keep yourself and your equipment away from the measuring point.

Monitor the outdoor air: (outdoor-indoor) CO_2 concentration is the critical measurement. Also-T/RH/p should be recorded and wind speed/wind direction can be important.

Calculating Uncertainty is not simple. Refer to the GUM document.

CO₂ measurement technologies

Diffusive and pumped samplers

The diffusive surface allows the target molecule to pass through to the adsorbing surface. Easy and low initial cost, but ongoing sampler maintenance ands analysis costs rapidly increase the cost of ownership

Non-dispersive Infrared (NDIR) Three grades of performance:

±30 ppm ±3% reading (\$40 to \$10) ±50 ppm ±5% reading (\$150 to \$50) ±200 ppm (see Amazon devices)

Cavity Ring-Down (CRD and Tunable Diode Laser Absorption (TDLAS) The Gold Standard, but cost \$6,000 to \$80,000

Non-dispersive Infrared- NDIR

NDIR sensors perform well and the price has dropped from \$100 to \$15-\$40

Sensitivity follows Beer-Lambert Law

Bright NIR and MIR LEDs provide new opportunities

Detector can be photodiode or microphone (Photoacoustic- PA sensor)

Power has dropped from 200mW to <2mW as the optical source has moved from tungsten bulb to LEDs and lasers.

Using gas decay when measuring ACH

A bit more analysis compared to steady state, but has fewer assumptions

Can be analyzed several times during the day, giving a diurnal picture of airflow.

Ventilation Information collected at different times allows calculation of different sections of the mechanical or natural ventilation system

13

NDIR Sensor Summary LED NDIR is now dominating CO₂ measurements: low cost, low power, stable, and acceptable data quality Good quality NDIR sensors (accuracy + precision) will be: ±60 to ±120 ppm from 425 to 1000 ppm CO₂ Lowest cost sensors will be ±150 to ±300 ppm CO₂ Correction for barometric pressure is advised Steady state or tracer decay to determine ACH? This author prefers tracer decay, recorded whenever the room environment changes