Field measurement of the durability of building airtightness- review and analysis of existing studies

Valérie Leprince – INIVE Tightvent Webinar 2020

Objective of the state of the art

- Learn from previous studies
- Improve the protocol for the other tasks of the project
 - Field measurements
 - · Laboratory testing

V. Leprince- Durabilit'air, task 1

Conclusion on-site ageing

- Seems that the airtightness decreases in the first years after completion and then stabilises.
- Explanation factors:
 - Heating houses for the first time may induce the shrink of mastics
 - Mastic shrinking when backer rod are not used
 - Structure movements and packing may induce cracking in the junctions between air barrier and penetrations
 - Occupants behaviour: Envelope drilling (lot in the first years), etc.
 - Unsuitable implementation conditions for adhesives and mastic (cold and/or dusty conditions).

V. Leprince- Durabilit'air, task 1

Impact on the testing protocol

- Questionnaires to occupants to find out drillings made in the air barrier.
- Leakage detection and visual inspection at visible assemblies of air barrier with specific care on:
 - mastics,
 - penetrations of building structure inside the air barrier (ex. carpentry).
- Information about:
 - Products used for the air barrier (use of backer road, compatibility of products)
 - · Construction details
 - Period when the air-barrier was layed-out (heating period or not)?
 - · Air-barrier heated prior to the first test?

19

Ê

Impact on the testing protocol

- Reduce measurement uncertainty
 - Same qualified tester perform tests;
 - Reports precisely describe building preparation including locked and unlocked external doors.
 - Measurement devices calibrated according ISO 9972.

- Measurements in low wind conditions.
- Airtightness compared at 50Pa rather than 4 or 10 Pa.
 - In flowrate at 50 Pa rather than ratio (n50 or q50) take into account uncertainty
- Average of pressurisation and depressurisation test
- Better to perform test at the same season.

V. Leprince- Durabilit'air, task 1

DEPARTMENT OF ARCHITECTURE & URBAN PLANNINGBUILDING PHYSICS RESEARCH GROUP

DURABILITY AND MEASUREMENT UNCERTAINTY

OF AIRTIGHTNESS IN EXTREMELY AIRTIGHT DWELLINGS

Wolf Bracke, Jelle Laverge, Nathan Van Den Bossche, Arnold Janssens

presenter: Wolf Bracke / 30 January 2020

1

OUTLINE

- Introduction
- · Test repeatability and seasonal variations
- Durability of airtightness
- Conclusions

INTRODUCTION

- Airtightness important to meet energy performance requirements
- · Increasing number of new houses with airtightness test
- Result of test may have financial consequences (fines, subsidies)
- · Reliability of test?
- · Long-term performance of airtightness, specifically for airtight houses?

LITERATURE REVIEW

- Repeatability (EN13829, method A)
 - o St. deviation: 2%
 - o Max. variation: 4%
- Reproducability (EN13829, method A)
 - · St. deviation: 3%
 - · Max. variation: 8%
- Seasonal variation
 - · Max. variations: 18%
 - · Swelling-shrinkage of wood
- Durability
 - · No conclusive results

(Delmotte and Laverge 2011)

(Kim and Shaw 1986)

OUTLINE

- Introduction
- Test repeatability and seasonal variations
- Durability of airtightness
- Conclusions

5

TEST OBJECTS

- Semi-detached passive show house
- Masonry construction
- $ACH_{50} = 0.55 (°2009)$

- · Detached passive show house
- Woodframe construction
- $ACH_{50} = 0.21 (^{\circ}2009)$

GHENT UNIVERSITY

INFLUENCE OF BUILDING PREPARATION

- EN13829: room for interpretation
 - · locking of external doors
 - · disconnecting the ventilation system: central or decentral air supply/exhaust
 - · position of blower door
- filling water locks

GHENT UNIVERSITY

7

7

INFLUENCE OF BUILDING PREPARATION

- Apparently small differences in preparation
- Relatively large impact on measured leakage in passive houses
- ΔV₅₀ of 50 m³/h represents 20 to 35% change in ACH50

REPEATABILITY AND SEASONAL VARIATION MASONRY HOUSE

- 10 days in 15 months
- 58 tests in total
- Repeatability in line with literature
 - o Day 1: 12 measurements
 - o Stdev: 1%, max var: 4%
- Variation result of changes in ductwork connections?

REPEATABILITY AND SEASONAL VARIATION MASONRY HOUSE

- 9 test days in 15 months
- 53 tests in total
- Repeatability in line with literature
 - o Day 2: 12 measurements
 - o Stdev: 2%, max var: 5%
- · No seasonal variation

OUTLINE

- Introduction
- · Test repeatability and seasonal variations
- Durability of airtightness
- Conclusions

11

TEST OBJECTS FOR ANALYSIS OF **DURABILIT**

- 15 inhabited dwellings from passive house estates
 - +2 show houses
- · Semi-detached and terraced masonry construction
- Age 3 27 months
- · New test results compared to original certification tests

DURABILITY OF AIRTIGHTNESS

- Average increase in air leakage by 32%
- Workmanship reproducibility: stdev original measurements = 19%

13

DURABILITY OF AIRTIGHTNESS: RELATIVE INCREASE

- · No significant relation with age
- Part of increase might be explained by differences in building preparation
 - Ventilation systems
 - Locking doors
- Observed leakage
 - o Operable doors
 - Service penetration

14

CONCLUSIONS

- · Study on air leakage in extremely airtight houses
- · Relative repeatability intervals in line with literature
 - More specific building preparation guidelines needed for better reproducibility of ambitious leakage requirements
- · No clear evidence of seasonal variation of air leakage
- · Long-term performance of airtightness
 - o 90% of houses showed larger leakage over time
 - o Relative degradation of airtightness, but small in absolute values
 - o Hard to exclude the impact of building preperation

15

15

FACULTY OF ENGINEERING IN AND ARCHITECTURE Wolf Bracke Researcher DEPARTMENT OF ARCHITECTURE & ENGINEERING RESEARCH GROUP: BUILDING PHYSICS, CONSTRUCTION & CLIMATE CONTROL wolf.bracke@ugent.be Ε f Ghent University +32 9 264 37 52 @ugent in Ghent University www.ugent.be **GHENT** UNIVERSITY

Assessment of long-term and mid-term building airtightness durability: field study of 61 French low energy single-family dwellings

Bassam Moujalled*, Sylvain Berthault, Andrés Litvak, Valérie Leprince, and Gilles Frances

*bassam.moujalled@cerema.fr

AIVC Webinar – Durability of building airtightness: Assessment through field measurements | 30 January 2020

1

Introduction

- The French research project DURABILITAIR (2016-2019)
 - ✓ to improve our knowledge on the variation of buildings airtightness through onsite measurement campaigns (Task 2) and accelerated ageing in laboratory controlled conditions (Task 3)
- Literature review (task 1) showed an important evolution over time of the air permeability in real buildings, especially in the first 3 years
- The second task of the project deals with the quantification and qualification of the durability of building airtightness of single detached houses through field measurement at:
 - √ mid-term scale (MT)
 - √ long-term scale (LT)

AIVC Webinar – Durability of building airtightness: Assessment through field measurements | 30 January 2020

Methodology

- MT and LT measurement campaigns based on two samples of singledetached low-energy dwellings:
 - ✓ All dwellings measured upon completion [measurement n0] and treatment of airtightness well known
- MT measurement campaign (1-3 years):
 - ✓ Sample of 30 new single-detached dwellings
 - √ The airtightness of each dwelling was measured once per year over the 3-year period [measurements n1, n2 & n3]
 - ✓ Five dwellings were measured twice per year (impact of seasonal variations)
 - ✓ For six dwellings, the airtightness of an installed window was measured once per year over the 3-year period

AIVC Webinar – Durability of building airtightness: Assessment through field measurements | 30 January 2020

-

3

Methodology

- LT measurement campaign (5-10 years):
 - ✓ Sample of 31 single-detached dwellings constructed during the last 10 years
 - ✓ The airtightness of each dwelling was measured once [measurement nx]
- Measurement protocol based on ISO 9972 and its French implementation guide, with additional requirements:
 - \checkmark Measurements to be performed under the same conditions as the measurement upon completion \mathbf{n}_0 both in pressurization and depressurization
 - ✓ Detailed qualitative leakage detection to be performed
 - ✓ Questionnaires for occupants to be filled at each measurement regarding the action of the occupants on building envelope

Cerema

RESULTS

AIVC Webinar – Durability of building airtightness: Assessment through field measurements | 30 January 2020

Characteristics of buildings

Mid-Term Long-Term 25 55 65 70 2009 2010 2011 2012 2013 2014 2015 2016 Year of construction

Year of construction

Average timespan between measurements

MT sample:

n0-n1: 1.7 yr (from 1.1 to 2.7) n1-n2: 0.7 yr (from 0.4 to 1.2) n2-n3: 0.9 yr (from 0.4 to 1.7) n0-n3: 3.4 yr (from 2.8 to 4.2)

LT sample:

n0-nx: 4.6 yr (from 2.6 to 8)

AIVC Webinar – Durability of building airtightness: Assessment through field measurements | 30 January 2020

(

Characteristics of buildings

Type of material & air barrier

MT sample:

Masonry walls with interior insulation: Airtightness by plasterboards and mastics at the inside facing of the walls (C)

LT sample:

Masonry walls with interior insulation: Airtightness by coating on the masonry (B) or by plasterboards and mastics at the inside facing of the walls (C)

Wood frame houses with insulation between studs: Airtightness by the vapour barrier (A)

AIVC Webinar - Durability of building airtightness: Assessment through field measurements | 30 January 2020

7

Evolution in q₅₀ MT sample

Evolution of mean q_{50} :

n0-n1: +58.9 m³.h⁻¹ / +18% (p-value = 0.037)Timespan = 1.7 years

n0-n2: +57.2 m³.h⁻¹ / +18% (p-value = 0.026)Timespan = 2.7 years

n0-n3: +60.4 m³.h⁻¹ / +19% (p-value = 0.037)Timespan = 3.4 years

AIVC Webinar - Durability of building airtightness: Assessment through field measurements | 30 January 2020

1-Press. 2-Depress.

3-Average

Evolution in q₅₀ vs. Timespan MT & LT samples ♦ MT_q50_nx-n0
♦ LT_q50_nx-n0 +700 No correlation between +600 +500 the age of the houses for Evolution in q₅₀ [m³/h] +400 both MT and LT samples +300 +200 $R^2 = 0.0045$ +100 $R^2 = 0.0004$ -100 -200 -300 Timespan [Year] **Cerema** AIVC Webinar - Durability of building airtightness: Assessment through field measurements | 30 January 2020

Conclusions

- Same evolution of airtightness at mid and long term
 - ✓ Similar increase in q₅₀ at mid and long-term (+18% and +20% respectively)
 - ✓ No correlation with the age of construction
 - ✓ Deterioration mainly during the first 2 years and then stabilisation
- Significant increase in the number of leakages for:
 - ✓ Doors and windows, electrical components, penetrations through envelope & junctions between walls and windows
 - ✓ But no correlation with the variation in q_{50}

AIVC Webinar – Durability of building airtightness: Assessment through field measurements | 30 January 2020

1

17

Conclusions

- Explanatory factors of the evolution of the airtightness:
 - ✓ No impact for constructor, type of air-barrier, type of floor, type of heating, specific HVAC equipment
 - ✓ No impact for seasonal variation
 - ✓ The airtightness of wood houses tend to stabilise or even improve over years
 - ✓ 2-storey houses seems to deteriorate more than 1-storey ones
 - ✓ Studied factors unable to explain the variations:
 - ✓ Other factors, such as conditions of implementation of the airbarrier, need to be explored

AIVC Webinar – Durability of building airtightness: Assessment through field measurements | 30 January 2020

Thanks...

Projet DURABILIT'AIR « vers des Bâtiments Responsables à l'Horizon

Lauréat de l'Appel à Projets de Recherche 2015 « vers des Bâtiments 2020 »

avec le financement de

AIVC Webinar - Durability of building airtightness: Assessment through field measurements | 30 January 2020

